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As aerospace. desig[wrs  strive to build sm.allci
syste.[lls, it is in}portrmt  that they understand scaling
laws to take full advrmtage of the. inhct e.nt strength of
snuIll structule.s.

Sinlple geometric .scalirrg yielcts nlasses  that Scale in
proportion to t’3. 1 Imvever,  in the. process, the stress
levels decrease, and the materials arc not used to full
advantage. Also, the resistance to hucklitrg increases
as the. lcnp.th decreases. With “elastic sealing,,  ” as the
dilmmsion parallel to the predominant load shorttvls,
the dinmmion norllml to the, main load is thinned down
even fast e.r, ‘l’his preserves a constant factor of safety
with rc.spwt  to the. critical buckling load. “1’he
Structural mass (teLwMes even faster than t’3 al)C] the
)~mterial is used nwm effectively than for simple.
gemrwtric  .scalin~. Examples abound in nature, flonl
trm  trunks to hones. Several such exan,p]e.s will he
shown to illustrate this type of scaling.

I)vem with elastic. scaling, the stress levels contimre
to decrease as the sim is reduced. An extension of
elastic scaling with more than one dinwnsion  nonluil to
the nrain load-hearing direction is considered. ‘l’he
possibility of scaling the different lateral dimensions
d i ffe.re.lltl y in an attempt to pre.ser-ve. constant stress in
the material as the ohjezt shrinks is invmtigated. It is
s}wwn that no systenwt  ic scaling can achieve this goal,
although some. useful insight is developed.

A related issue. is the. minimum pa~e problenl.
Where onc attempts to use elastic scaling (or even
geonwtric waling), onc discovers that as the. sim
decr~’a.sea,  the materials required he~ome too thin tc}
handle. Techniques for addressing this difficulty u’ill
he di.scus.sed.

~rt mdgct ion

Clmcntty,  ttrc.re isatrend  tcrward  rcducirrgthesize
of spacecraft, as evidenced by the existerm  of this
conference. As we s},rink  the. sim of acrosimce
structures, or any other type of structures for that
matter, it ishe.lpful touncterstrrnd  t}\e. aI>plicatlle walil~g
laws.

In thispaper,  thecorlccpts  ofallo~]tetry,a  rldelastic
scaling will he definedi Ilxan@em$ froni natolc  will be.
shown tc] illustrtite these concepts. “1’he.se ideas and
illustrtitiorrs are taken from a Scientific Anwric.an
Rook. “On Simand l,ife.’.’

I)esigns created by nature. setm to he well
optilnimd.  Chewing trends in nature ancl applying
tlmn] to enginemirrg designs is a reasonable. thing to cIc).
“1’his is especially true if we can deduce the underlying
physical principle-s and apply them to trroad classes of
])101)1(!1)1s. Structural elmlents  in nature, suchashon(x;
and trm trunks, scale. elastically over nratry orders of
tlmgnitude in size. Botiesinsrnall aninurls are nmch
nmre slender than inlarge. aninrrds.  That is, the.length
todianwtcr  nrtioisgreater forhone  aof small aninuils.
‘l’his f(mn of scaling prc.serves constant re.sishrnc.e to
buckling, as will bc shown, I’hc main concept of
elastic seating is that thereare two length scales which
vfiry ctiffrrt,ntly Wit}l si7fi,

‘1’hem  are practical limits to the extent to which
these ideas can be used in real structurw.  I’he..se ideas
apply strictly to the main load bearing e.lemcmts. III

numy cases, especially for very small structures, tlm
overhead of joiriing the main structural ele.nle.nts
to.gcthe.r and of ntounting  other elements to the main
structure. ccrnsume.s a significant portion of the total
structural mass. Also, as the main structural elenmts
are thinned dowm,  they can hecorne  difficult to
nlrrnufacture and to handle. I’his is known as the
nlininmtll gage. protdeni. This difficulty will bc
discussed and some potential approaches to solving this
proh]cm  will he discussed.

Chic way to compare the relative sires of two
fe~turtis  of an orgwrisnj is to me an expression of the
forln

y s hxa.

“1’he. length of a hone could he represented by x and
the diallwte.r by y. If the din)e.nsion.s  follow this form



of cqurition, km they alc said to scale allmuc. trical]y.
If x ad y arc allomctric,  then when they are. plotted  on

lop  paper for sevtiral  different organisnls, a straight
line will bc obtained with slope equal to a. Many
dimensions for orgtmisms,  both plant and animal, are
rrhscrved  to scale this way over many ordrrs  of
magnitude, It should be noted that this is nw.rcty  a
dwcr ip(irrn of how one, dimension varies with another
as the rrvc~all sim changes. It does not explain Yhy
t}lis behavior is ohser ved. ‘l’he explanation requires
flll(}l(’1 analysis.

‘I-}m special case of allolnc.tric scaling for which
a = 1 corresponds to pure geometric scaling. One
dimension is dire~tly proportional to the other. I’his
special case is referftxt to as isometry. Adult mammals
tend to scale. isometrically within their own specie.~.
As an exanll]le, an adult human’s arlnspan  and height
are. very ne~t-ly equal, as illustrated in the ftimorrs
drawing, “Vitruvian hfan, ” from lxmnardo da Vinci’s
notebooks. In this case, both a and b are. equal to 1.

1 f one, compares cell si7c, y, and the overall si7c,
x, of an organism, one finds that the. cell si7,e is
e.s.sentially independc.nt of overall si7e. l’he value. for
a is very close to 7c.ro. q’he value for h is thus the
typical cell si7~’., which is roup,hly  constant independent
of the overall si7e of the animal or plant.

If one. is troubled by the units of a and b, it is
perhaps better to recast  the allonmtric relation in the.
forin of ratios:

[1
0

~= b _Y
>0 Y(I

whcm X. and y. arc reference values for one particular
individual. Now both a and b are dimcnsiorrless.

JSollwt  ry .

W h e n  o b j e c t s  are scaled isonwtric.ally, all
dimcnsicms are proportional. “J’his is t}le familiar
example. of scale models. Volumes arc proporlicmal to
the. length cubed and areas are proportional to length
,sqrrared. ‘l’his leads to the so called square.-cuhe law.
If the density remains the same, then the weight is
pi oport ional to volume, or cube of the le.ng(h, whereas
the area over which the. forces are distributed is
ploporiional  to the. area, c)r length .squarcd. The st re.ss,
(or pressure), which is just force divided by awa, is
there.fore proportional to volunre divided by area, or
simply to length, As an objed  grows isometrically, the
stre.sse.s due to its weight increase in proportion to the

length of the clject. “1’his is often quoted as the rt’ason
snltili childlcn can crawl ahorrt cm the.il hands a n d
knee.s on hard sulftices  without grief, whereas  adults
suffer t[m)endously  if they atknlpt  the san)e feat. ‘l’his
is also offered as the explrrnrrtion why sntall aninials
such as nlice can fall fronl great heights without beirlg
}Iarllwd.  As we. will se< later, small anitnals do e.vem
hctter tl)tin predicted by the square-cube rule.

~llolllctryt

When one conll)ares  animals within a broad class,
such as all rnanlmals,  one. can find many parameters
that do not follow isometry, but which are well
described by the allorrmtric expression. };or example,
The. nlaxir[Lal  rate of oxygen consun@ion  is found to
vary according to the ().8 power of the body maw.

“1’hc particular examples of allonwtry that intcvc.st
us with respect to structures are. those of tre~. trunks
and branches, and bone.%  and muscles. I“he.se struclurc.s
have a prtxlominant  load-bearing dirwtion  along their
Ieng,th, which we will define to be t’. ‘l”hey also have
a characteristic dimension normal to the Ic.ngth, which
wc shall refer to as d.

jHastic Sinlilarity

When one inve.stigate.s variations of several orders
of mfignitucte in body mass of marmiurls,  one finds t}lat
the length of bones is not proportional to the 1/3 power
a< would be expeded  based on geometric scalin~.
]nsterrd,  the. power is experimentally oh.served  to be
clowr to 1/4. Similarly, d is proporticmfil  to the 3/8
powwr  instead of 1 /3. Equivalently, the. cross-  sectirmtil
area is found to scale according to the. 3/4 power rather
than 2/3. T’hese variations are also observed for t rw
trunks. Iirom the above relat ions,  wc can easily
deduce the. allometric  relaticm hetwecn  d and t’:

e a ,,, ”4 -: tti u e4

d c1 nis’g = (14)3’8 = e3’2
~ ~ ~3/2

“l’his particular allometric  rtdation is referred to a$$
“ela$tic scaling. * We should remember that the..se ale
lneruly observations of what occurs naturally. No
ex])lanrrtion  is directly given by these relations. T’hat
will conm later.

h’ig,ure  1 shows the skeletons of two primate-s of
greatly different sizes but drawn in the fi~ure. with the
same height. It can readily be .sem that the smaller
aninml, the, Sianrang, has relatively much mm slender



hones (}mn the Iargcr  Gorilla. ‘] ’}lis ]]]\] stralcS elaslic
scaling: the ctianw.ter  increases more. rapidly than the
leilg,th of the hones as si7f increase.s.
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1
Shllllng Gorilla

l’igure 1 IilaslicSc.sling

3“he length and cliamcter of the. hrrnwrus  hone for
several s~wcie.s ofantelc)~ aresllow’llin  J:igurd2.  ‘1’hc
slc)]w.  c) ftheline. c) ftllislog-l{~g plot is 2/3. Rezall that
the, slopeof a lirreon  Iog-log paper corle.spends to the.
cxponcmt in the. relation betwez.n the two vari~bles.
~’hus P crc12’3, or equivale.ntly, cl a C3’2, ‘1’hcsehcme.s
cxhihit elastic scaling. ~’hc figure  also shows a fair
amount of scatter, which is c.onmmn for this type of
data. Nonetheless) there is no doubt that the slope is
ctiffcrcmt from the. valucof 1 that would  Iwprrxticted
hy isomctry.
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Midshaft  dlaniclcr, d (mini)

I;igurc 2 Antelope }lume.rus  Bones

A sin,ilar plot is shown ir, l;igu~e 3 ff~[  trees. “1’he
points plotted are for S76 record trees rcprwcnting
wlwt are. hclievcd to he the tallest and broaclcst  trws  of
most of the sJ)ecicx ccmlmon to the. United States I . ‘lhe

clianwtc>rs wfcrc nwasured  .5 feet above. the ground.
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I;igurt!  3 “1’rw ~’runk Measurements

~uckligg,

As ckscrihed  in numy engine~ring  texts, hucklirq:
is a phenomenon in which a slender colunm loaded in
conlprcssicm assullws a towed  shape  when  the l o a d
exceeds a critical value. For a colunm  built in at the
base WKI fre< at the. top, the critical Ic)acl is ~iven try?:

I’cr = 2’2[:1~t?
where the. parameters in the. equation have their usual
nlefinin~s: Ii is the. modulus of elasticity, I is the area
monwnt of inertia c)f the cross-section, and f is the
length of the ccdumr?. Fc]r a circular cross-section,
1 = 7rc14/64.  Diffenmt constants multiply the buckling
expression for different end conditions, but the form is
always the sallle,.

in the derivation of the expression for the. criticat
buckl ing load, the weight of the colunm  itself  is
ne.gle<ted  in conlparison with the externally applied
load. lior a tree, the loading of the trunk is due. to the
weight of the tree. itself. The weight of the tree is
pro~)ortiollal  to the. product of its height and its cross-
sectional area, ~’hus the. lc~ad it must hear is
proportional to t’d2.



A frwtor of safety is Mined as the failure. load
dividwl by the. expected nmximunl load. 1 .et’s e.xploru
the assunlp(ion  that trrxx are “designed” with a constant
f ac to r  o f  s a f e ty  independe.trt  of size, llndet th i s
assunlption, if we divide the. load into the critical load,
wc should obtain a constant:

I’cr ~4,t? - #
cl - = 0 Conslcrtlt-  P f~2  - -t3

If this is inchxd constant, them d should he proportional
to t’3’2. In Figure.3,  the dotted line dcpictsthetrcnd
of dianwters and heights for large tree.s. T’hc., slope of
t}lis line is 3/2 which suppcrrt  sour assuniption. Since
the. tree. n~easurenmnts  show that the diamc(ers  of the
trunks (and also the branches) scale in proportion to
f3’2, we. can scc that trees of different sires have equal
rt..sisttil~ce. tc)ht]ckling.  ‘I’hisexplains,  at least paltially,
why this particular allotne.tric ratio occurs. Alnmst
certainly there are. other factors contributing to this
scaling too. Nonetheless, the. evidcllce  isquite.  strong
that huckling re.sistancei sa dominant aspect.

I’he solid line in Figure 3 is based on an analysis of
buckling of w~oode.tt cylinders of constant diamctm
under their own weight. Poles with dianmters  and
hmgths to the right of and below this line. will c.ollap.se
under their own weight in the earlh’s gravity. The
~)intscc)rres~)  n(lingtotr~.s lies afely above. theline,
but in sonle cases, tbc frictor of safety Secnm t o  h e
fairly small.

lilastic  Sc.aling of Artificial Structures

‘1’he analysis of buckling in the previous section
applies equally well to tubular columns designed by
hun!ans. Suppose we. have a proven space~taft  design
that usm tubular struts as load-bearing members and
we wish to scale down the. whole vehicle.. llcw should
we. proceml? In order to prw.erve the resistance. to
buckling, we can apply elastic scaling. I&t’s assume
that we. can apply elastic scaling to every single par{ of
the. spae.etraft.  In a real example, this would not k
possible. Imt’s  also assume  that the accelerations to
which the vehicle will be subjected arc the same. for
both cases. In fact, smaller structurw  will likely
experience. larger accelerations, but we’ll kefip it simple
to keep the concept clew. Suppose we are reducing the
overrill  si7e, by a factor of two. Ld’s concentltite. on
the strut as a simple example. ~“he. new diarne.ter will
t}lus be given by:

~= [L&j:= [;,: =0.3,4.

Although the length is half of its orip.inal  sire’, the
dianlt>trr  has rt’duced to shout 35% of its original siz.
clearly  the. length to diameter rtitio  has incrt>asexl in the
J)rocess. This ntay cause concern since the graphs  in
eng.inecrinx  textbooks show that the. critical load
de<reaws  as t/d increases. }Iowe.vet,  in this example,
the load has also decrtised  by the same amount as the
CI it ical load since. e.ve.ry  single part of the spacecraft
has bc<n scaled elastically. l’bus, the factor of safely
is the srrnm for both si7~.s of spacecraft. It should be
noted that not only the diameter, but also the tube wall
thickness should be reduced to 35% of its original
value.

Continuing to assun)e that all parts have hem)
scaled elastically, what can w’e expect  the ratio of
nlasse.s of the. two spacecraft to be?

[1P4hew,

‘fold

0.0625,

‘l’he ha] f-sire spacecrtift  is sixtemr tinle-s Ie.ss massive
tllallt}lcori~~itlal. q’hisis  twric~as li~}ltas w’c)tlldilave.
hccnachicvedby sirl~I,lei  wn)etlicwaliilg.

A sin~ilar analysis of hcmeycornb  panels confirnls
that elastic scaling pre.ser=ves  resistrmce to buckling. in
]~lace of the dianieter, we scale the thickness of the.
skins and the spacing between  the skins in proportion
to t’3’2. Strictly, weshould  also scale. the. othe.rlaterirl
dimension (the.widthof the panel) the. sanw. way, but
the panel will never buckle. that way, so we. can scale
t}mt dinmnsion a s  we fdea.se. Essentially, we. are
dcalitlg w’it}lloaditlg~r  unit span.

~xten!ion  tg l_;laStic_Scaling

Itlastic scaling preserves bucklitr gresistance.  IIUI
what of the stress in the material? Are we nmintaining
a silllilar factor of safety with respect to the, yield
stren~th of the material? q’he answer is no, As U’C
reduce the siz~., the stress goes down. As showm
above, with elastic scaling, the weight scale$ in

4 The crosxs-sectional  area resisting thtipropm lion to t’ .
load sctiles  in proportion to d2. Since d C-U  t’3’2, the
stress goes as e4tt3. That is, the stress is directly
proportional to t’. As the. sim goes down, the st re.ss
level goes down.

1s there not some way we can use our enginwring
knowledge, to do better? IA’S consider a tubular strut
in isolation. Suppose we. have waled it elastically



alotlg with the entire slmce<raft  ILlst rrs discussed above.
‘I”hc cross-.sectirrrrrd  aica of ‘a thin-walled tube is
approximately n(tt, wherti d is the dialneler and t in tlIe
wv+ll  t}]ickness.  If wc now inclcxrse.  the dianmter  of [I)e
tube and decrease the. wall thickness in such a way that
wc keep the sanw cross-.sectirmal  area (t a 1 /cl), then
the moment  of inertia will increase. ~’he.  moment of
inertia for a thin+valled tuhc is approxirnntely  !4Ac12.
Since the area is constant, the monmnt of inertia cleally
increases in proportion to r12. With the inclwrwd
moment  of ine.rlia, the buckling resistance will
inclease. ‘l’he mrrss will not have changed, hut
sonwhmv the design will have irrlproved, But wc don ‘t
rc’zdly  want to increase trrrckling  resistance; it is already
adequrrte.. We want to decrease the cross-sectional area
to get the. stresses back up to the values they had in the
larger spacecraft.

As an alternative approach, wc could increase the
diameter ancl decrease the wall thickness in such a way
that the mornenl of inertia remains constant. ~’his
inlplie.s that the. cross-sectional area will he proportional
to l/d2 and t ~ l/d3. Since the cross-sectional area
de.crease.s and we can now attain t}le. stress levels that
were present in the. original full-sire stlucture.  In the
process, the nrass  of the strut has dezrwsed even
though the buckling rwistance  has not changed.

We}lave.hecn considering the. strut inisolatirm.  If
we, could some.how apply this tezhniqrrc of thinning the.
walls and increasing the. diamcte.r  to all parts of the
spacecraft, then all the masses would dezrcase and the
rtwlting loads woutd decrease. We would find that
w were. right back were we started: the. stresses
dwrea.se  as t}le sim decreases.

In fact, for any c.orrsistent method of scaling applied
to all parts of a structure, the stress will always be
proportional to f when the loads are due to the weig}lt
of the. structure. (gravitational or inertial). I’hat  is
hccause  the loads are proport ional to the weight which,
in turn, is proportional to the length times the cross
sectional area. To obtain the. stress, we divide this load
try the cross-sectional area. I’h.s  area then cancels and
we are left with the strew being proportionrrl to length.
‘l’he. key word is “consistent. ” If the scaling is applied
to everything, then the. stress will be proportional to
length. Period. We cannot do nmgic.

We. can, however, use the procedure of thinning the
walls and increasing the diameter to change  our design.
This is no longer scaling, but it is a valuable. tool. It
can allow us to reduce the mass of the structure
.some.what.  As with many engineering dezisions, there

art’ trtid~’-offs, With thintler walls, the tubes arc more
suscq)tih]c to handling  forces  during nrmllrfactulc and
awctllh]y,  and the tolerances hezome tighter. Also,
when ttikcl] to extrrnles,  the walls bc-conm so thin thtit
local hucklirrg  (crumpling, or crippling) can occur.
‘1 ‘hcsc effects  arc a little. beyond the scope of this
simplistic presentation, but should not be ignored in
practice.

-Maw Fraction

If all parts of a spacecrirft are scaled elastically,
lhe.rl the nmwes of all parts will scale. in proportion to
one another. Not all of a spacxxrafi is structural,
howtwer,  Still, if all parts including those that are. not
structurtil can be scaled elastically, then the structural
nlass frfiction  will not change as the overall si7r of the
spacwrtift changes. ‘l”he.  only way that the mass
fraction corw.spondirrg  to the structure can de<rcase is
if the. rest of the spacwraft  reduces in maw more
slowly. For convenience, lets denote the non-structural
pal-[ as “payload” even though this is not strictly
accurate.. Suppose, for example., that the “payload”
can only he scaled geometrically. I’hc.n scaling the
sti-uctultil  pc)rtion elastically will result in its mass
being a snirdle.r pro~)ortion  of the. whole than for the
original larger spacecriift. But there is no guarantea
that this structure. will be adequate since. it is now
ctirlyiltg a l)lopwtionate.ly  larger payload.

“l’he awrlysis of this situaticm is nc)t so sinlple since
we arc now adding  components which scale with
different powers. Some prelinlinrrry work indicates
that it Illight  be possitde to reduce the s(luctulal nmss
fraction when the paylcjad decreases more slowly than
elastically. I’his result is encouraging but tentative and
warmnts further e.xanlination.

So far, we have ccmsidered only axial loading of
structural elenients. It is interrxtirrg to observe that
hcnding  of bcanls  also .Scales  elast ically. };or a
cantilevered uniform beam with a square cross-seztion
with dirlwnsion,  d, and length, t’, deflectin under its

3own weight, the slope at the end is equal t -:

If one wishes tc) scale this case to a new length, then
for the shape of the bent bar to be geometrically
sinlilar, the slope at corresponding points must be the
san)e,  including the end point for which the expression



is given above.  In order to keep the slope tlw srrnm,
the ‘diameter” should scale in proportion to t’s’z. ~“his
is immediately recogni7~d as the elastic sealing. It is
not just this specific  example, of bending that scales this
way. All beam bending problems have a sinlilar form;
just  the constants are diffelcmt. 3“his also explains why
the hrimehes of tre~s scale. elastically as v,wll as the
tl”rlnks.

yltjd stress

one should note. that the yield stress has not
appeared  in any of these analyses of buckling  or
bending,. In fact, the critical buckling load is not
dependent upon the yield stress, just the ntodulus  of
elasticity. This is also the case in bending stiffness.

‘l’he. ultimate bending strength, however, is limited by
the yield strength of the. material.

‘1’lm  rnaxinmm  stress in a beam bending ptohlenl
scales in proportion to t’ just as it rlici for buckling.
provided W,C are taking an existing successful design
and making it smaller, we can safely apply elastic
scaling. If we scale ~, then we nwst he careful to
check that the maximum strti.ss does not exceed the
yield stress.

When one scales down a structure using either
ela~tic scaling or geometric. scaling, one eventually runs
into sonw limits. The scaling laws can predict ideal
values of t})ickne.ss that cannot be achieve in practice.,
at least with current prc)duction  methods. l{or example,
in a recent  study, honeycomb panels were to form the
main structure of a launch vehicle, aclaptc.r. ‘l’he
required thickrrms of the aluminum faceshects  was
found to be about 0.05 mm (0,002 inch). “l’his is a
factor of ten thinner than honeycomb manufacturers
like. tc) produce.

What tethniquw  can we use to overccmm such
difficultierr, or at least delay them to smaller vehicle
sires? If we simply use the materiats available, our
small structures will bc much stronger than they nezd
to be. I“his is acceptable if mass is not an issue. It]
most aerospace structures mass is an issue.

~urrcntly,  there is an emphasis on developing
technologies that will enable. very small micro-
spacecraft. A study is underway at J}’]. to develop a
S kg spacecraft concept that could e.xe<ute a flyby of a
near-earth asteroid or comet. 3’o rned such goals, it is
not adequate to simply accept existing nlethocts.  New

tL’L’hlliC]LIL’S, o r  a t  l e a s t  n e w  a p p l i c a t i o n s  o f  Old

twhniqucs, ntust k iden t i f i ed  and  dcvedoped.  A few
of thcw will be. discussed briefly here,

~.ow’ d~rlsity  rluite.rials

in all the scaling discussed above, it was irl@icitly

awrillcd tluit the Srrnle  nmterial was used  in the original

latgc  dtsign and in the srrraller  derived design. We.
}mvc swn that this can lead to very thin nmte.rials h-in~
specified. Another approach is to use rrraterials  with
Iiluch lower dcmsitie.s than the metals traditionally use41.

If one could find a material that was ten times less
dctlse than aluminunl and with a yield stress also ten
tinws smaller than for aluminum, thcrr one ccnrld
rci~lace. a 0.05 mn] pane] of aluminum by a 0.5 rrlm
panel of the new material. ~’he mass and load-bearins
capfihility would be idcrrtical. q“he. greater thickness
would sigiiificantly enhance the resistance to buckling,
If buckling wwu the dominant failurti mode of the
original dtisign, then this would permit the. mass to be
dwreawxl  even beyond that predicted by elastic scaling.

I ;vcn if the ratio of the yield stress tc) densit y is not
as high as for aluminum, it is still possible to achieve
an overall wc.ight savings using the low density
n~rite.ria]  provickt  that buckling is the dominant failurt:
nmcte. In essence, the thicker low density material
provides a greater nlomemt  of inertia by spreading out
t h e  load bcarirlg rrraterial. For a flat panel, this
nmment of irwrtia is proportional to the. thickness
Cut)ut. “l’tie frrctor of 10 in  thickne-ss increases the
buckling, resistance by a factor of 1000. ‘l”he.rc is
sig,nifrcat[t “gain” in this method!

Another advantage of using the low density material
is that the relative tolerances are much easier to
achiewc. Referring back to the 0.05 nml honeycolld)
firces}wcts, a 10!% variation is thick rreas is 5 pnl
(0.0002”) for the alurninuni,  but it is 50 pm (0.002”)
for the low density substitute. It should be noted that
conlposite.s  do not flt in this category of low density
nurterials. ‘l’he densities are only about a factor of tuw
less than aluminum. If anything, the higher strength of
the composites leads one to thinner walls and less
buckling rcsistanc.e.

When a single panel would buckle under its load,
one can sldit the. panel into two sheets with half the
thickness each and bond honeycomb between the two.
“1’he hone.ycontb  serves to provide shear resistance
be.twezn the two panels but does not contribute



significantly to the lorrd-bearing capability along the

pane l .  ~’he. assembly is very stiff in herding.  in  a
sense, the honeycomb acts like the u’eb of an l-bexnl,
‘1 ‘lie. nmment  o f  iner(ia o f  the c~oss-sect  i o n  i s
p r o p o r t i o n a l  t o  the  square  of the  sprrcing  hetwec.n the

two sheds.  ‘J”his is another way c)f spreadin~  apart the
load-bearing material to increase the moment of inertia
and the.mfom  the. bending stiffness,

lioam core is a similar concept. instead of
hone.yccmlb, a lightweight foam is bcmded betwm.n  the
two sheets. Foam core made with cardboard face
sheets  is widely available in art stores for moun[ing
presentation material.

In principle., the face she~ts  for honeycomb or foam
core. could be nude quite thin. Think of two pieces of
shin]  stock with soniething betwezn  thetn. in practice,
it can be difficult to achieve.. Also, the nlass of the
material in betweas the two sheds  begins to excezd the
mass of the faceshe~ts.  Very thin sheds,  while strong
enough to withstand the. design loads, still rnfiy be
susceptible to drrnrage  by finger nails or tools during
handling, assembly, or manufacturing processes. Ancl
ap.sin, realistic tolmrnce.s become  a significant frtiction
of the. total thicknms.

lsrrgrid  is the product of a nlilling mach ine
rrpcratiorr  in which triangular holes are. cut through a
thick (say 10 mm) slab of material. Thin walls are Ie.fl
betwet.n the, triangular cells. q“hese walls ccmnezt the.
nodes which occur at the points of the. triangles. These
nodes form a hexagonal ~]at[e.rn. lsogrid has bmn in
use fol about three decades and is fairly sinll~le to
analy7e.3.

Over a distances bigger than a few CIJIS, a panel of
isogrid  behavexi very much like a solid slab with a
much smaller average density than the parent material.
Its effective modulus goes down more than its mean
density, however. It is used in a fashion quite
analogous to the IOWJ density materials discrrs.sed above.
By nlaking the cells larger, one can reduce the average
density of the slab, Ultimately, one runs into t}le
minimum gage, problem with the webs, but at a lower
effedive.  density than honeyconlh  with its continuous
faceshezts.

lncidemtally the t r i a n g u l a r  bolM nec.d n o t
C.ornple.tely  penetrate the original Mock from which the
isogrid  panel was nrachined.  One. can leave a thin skin
cm one. side. Also, by using an undercutting ll,illing

tool, mm  can give. the. webs a “1’+wction cm the upper
surface. ‘l’his helps maintain the buckling resistance of
t}m webs the.niwlves.

A nice. feature. of isogrid is that the nodal points can
be drilled and taJ~ped to provide a built in set of
mounting fixtures. ~’his can significantly reduce the
serordary  mass by eliminating mounting brackets.
I’his was demonstrated on Skylab, which had an isog~id

4 Given that the primary structure can befJoor/ceiling,  .
made quite light, for small structures it is espcxially
important to pay attention to the mass of joints,
firste.nefs,  brackets, at tachnlents, and other secondary
structure.
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l’igure. 4 lsop.rid  Skylab Floor

Scai ing of small structures has be~.n discussd, ‘l’he
concepts c)f allometry and isornctry  have betn  de. frned.
Illastic scaling is the particular allomctric  relation
d rx f3t2. ‘l”he dimension normal to the main load
(diameter) scales in proportion to the 3/? power of the
length. Bones and tras are. observed to scale. this way.
Iilastic scaling can be used to scale. down aerospace
structures and should reduce the, mass faster than
sirlqde. gconm.tric  scaling would.

Iilastic scaling preserves constant resistance to
buckling and bending. As the size. detreawa,  the stress
]e.vcls decrease. I’his can be a problem when scaling
up but s}lould not be an issue when scaling down.

“l’he square.-cube law was mentioned. It is
reasonably convincing and suffices to convey the
concept that small objects are inherently stronger for
their weight than large objects. In fact the argument is
really not ccmplete.  The. main load bearing bones  c)l
skeletons of mammals tend to scale elastically.

3“he n]inimurn  gage problem, which can bean issue
for snlall structures, has bwr addres.wd. Some
techniques for dealing with it have bcxm sugg~sted.
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